Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity.
نویسندگان
چکیده
Alterations in the human 13q14 genomic region containing microRNAs mir-15a and mir-16-1 are present in most human chronic lymphocytic leukemia (CLL). We have previously found the development of CLL in the New Zealand Black murine model to be associated with a point mutation in the primary mir-15a/16-1 region, which correlated with a decrease in mature miR-16 and miR-15a levels. In this study, addition of exogenous miR-15a and miR-16 led to an accumulation of cells in G(1) in non-New Zealand Black B cell and New Zealand Black-derived malignant B-1 cell lines. However, the New Zealand Black line had significantly greater G(1) accumulation, suggesting a restoration of cell cycle control upon exogenous miR-15a/16 addition. Our experiments showed a reduction in protein levels of cyclin D1, a miR-15a/16 target and cell cycle regulator of G(1)/S transition, in the New Zealand Black cell line following miR-15a/16 addition. These microRNAs were shown to directly target the cyclin D1 3' untranslated region using a green fluorescent protein lentiviral expression system. miR-16 was also shown to augment apoptosis induction by nutlin, a mouse double minute 2 (MDM2) antagonist, and genistein, a tyrosine kinase inhibitor, when added to a B-1 cell line derived from multiple in vivo passages of malignant B-1 cells from New Zealand Black mice with CLL. miR-16 synergized with nutlin and genistein to induce apoptosis. Our data support a role for the mir-15a/16-1 cluster in cell cycle regulation and suggest that these mature microRNAs in both the New Zealand Black model and human CLL may be targets for therapeutic efficacy in this disease.
منابع مشابه
Role of mir-15a/16-1 in early B cell development in a mouse model of chronic lymphocytic leukemia
In both human chronic lymphocytic leukemia (CLL) and the New Zealand Black (NZB) murine model of CLL, decreased levels of microRNAs miR-15a/16 play an important role in the disease. Here we investigate the effects of this microRNA on early steps of B cell development and the capacity of miR-15a-deficient hematopoietic stem cells (HSC) and B1 progenitor cells (B1P) to reproduce CLL-like phenotyp...
متن کاملAbnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice.
New Zealand black (NZB) mice with autoimmune and B lymphoproliferative disease (B-LPD) are a model for human chronic lymphocytic leukemia (CLL). A genomewide linkage scan of the NZB loci associated with lymphoma was conducted in F1 backcrosses of NZB and a control strain, DBA/2. Of 202 mice phenotyped for the presence or absence of LPD, surface maker expression, DNA content, and microsatellite ...
متن کاملInvestigating the Targets of MIR-15a and MIR-16-1 in Patients with Chronic Lymphocytic Leukemia (CLL)
BACKGROUND MicroRNAs (miRNAs) are short, noncoding RNAs that regulate the expression of multiple target genes. Deregulation of miRNAs is common in human tumorigenesis. The miRNAs, MIR-15a/16-1, at chromosome band 13q14 are down-regulated in the majority of patients with chronic lymphocytic leukaemia (CLL). METHODOLOGY/PRINCIPAL FINDINGS We have measured the expression of MIR-15a/16-1, and 92 ...
متن کاملHistone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia.
Chronic lymphocytic leukemia (CLL) demonstrates a global down-regulation of miR-15a and miR-16 and a selective silencing of the related miR-29b in aggressive disease. Deletions in chromosome 13 [del(13q14)] partially account for the loss of expression of miR-15a and miR-16, but the mechanisms by which miR-29b becomes silenced is unknown. In the present study, we show that the histone deacetylas...
متن کاملLYMPHOID NEOPLASIA Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia
Chronic lymphocytic leukemia (CLL) demonstrates a global down-regulation of miR-15a and miR-16 and a selective silencing of the related miR-29b in aggressive disease. Deletions in chromosome 13 [del(13q14)] partially account for the loss of expression of miR-15a and miR-16, but the mechanisms by which miR-29b becomes silenced is unknown. In the present study, we show that the histone deacetylas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 8 9 شماره
صفحات -
تاریخ انتشار 2009